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Abstract. We introduce and study frustrated cellular automata (CA) obtained by quenching
competing Chat́e–Manneville rules. A period-two (P2) rule and a quasi-periodic one with period
close to three (QP3) are frozen at random on the lattice sites. We find that the periodic and quasi-
periodic cycles are resilient to internal frustration as well as to external unbounded noise. A
low concentration of impurities improves the (quasi-)periodicity of theCA, damping the chaotic
background noise significantly. Starting from pureQP3 CA, a first phase transition happens at a
concentration of ruleP2, p(P2) ' 0.359, leading to a macroscopic fixed point. A second phase
transition, atp(P2) ' 0.70, brings theP2 phase. Although macroscopically stable, the central
phase displays a stretched exponential relaxation of the site–site autocorrelations, indicating the
presence of a new type of glass with slow dynamics superimposed on the natural cyclic dynamics
of the CA rules. These results appear to be quite general and are found for many pairs of rules.

1. Introduction

Cellular automata (CA) have attracted attention over the last decade for a variety of reasons
[1]: (i) since they are discrete objects in time, space and the number of states accessible,
they can be studied exactly by numerical methods; (ii) in spite of their apparent simplicity,
they remain a theoretical challenge and no general theory exists that can classify their
macroscopic behaviour simply by looking at the local rules; (iii) the rules chosen are
arbitrary so they offer a useful method for studying a wide range of non-equilibrium systems.
With suitably selected evolution rules,CA can reproduce complex dynamical behaviour like
avalanches or the Navier–Stokes equation [2]. Cellular automata therefore constitute a
unique class of dynamical systems on which one can easily test concepts and methods of
analysis.

For thermodynamical–equilibrium problems, Toulouse showed that frustration can play
a fundamental role in the creation of complex phenomena [3] both in ordered and disordered
problems. Since then, this concept has been very useful for a wide range of problems ranging
from the ordered axial-next-nearest-neighbour Ising model (ANNNI) [4] to spin glasses [5].
Relatively little is known, however, about the effects of frustration or competition on
dynamical systems. It is therefore interesting to see how much of the understanding gained
in equilibrium physics can be transferred to dynamical systems.

In the present paper, extending previous results [6], we use simple periodic and quasi-
periodic cellular automata to study the stability of time oscillating systems under introduction
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of disturbances: external noise or internal frustration. Many complex non-equilibrium
systems display a periodicity in time achieved via synchronization and collective behaviour.
The interest of the specificCA studied here, first introduced by Chaté and Manneville [7, 8],
is that although they display temporal periodicity macroscopically, they remain spatially
homogeneous, allowing us to concentrate on one effect at a time.

We introduce frustration by quenching at random on the lattice two evolution rules
leading to different time behaviours. We have selected a rule with periodicity two (P2) and
a quasi-periodic one close to period three (QP3) which are attributed randomly to each site
of the lattice and quenched there. For low concentration of the minority rule, the temporal
behaviour remains controlled by the majority rule. When the two rules are present with
roughly equal probability, a new phase appears which shows no macroscopic periodicity
but displays stretched-exponential relaxation of the autocorrelation functions. These phases
remain stable in the presence of a finite amount of external noise. Results presented here
seem to be general in that they are found for many pairs of rules.

The structure of this paper is as follows. In the next section, we review the general
properties of the Chaté and MannevilleCA. In section 3, we examine the stability of the
periodic and quasi-periodic phases under frustration in the deterministic limit. Section 4
presents, still at zero external noise, results for the glassy phase found at a large degree of
frustration. In the following section, external unbounded noise is introduced and its effects
discussed. Finally, in section 6 we show that many other rules present qualitatively similar
effects.

2. The Chat́e and Manneville CA

The cellular automata rules used in this paper were introduced by Chaté and Manneville
a few years ago [7] and their properties studied extensively in a review article [8]. These
models evolve following simple totalistic rules which are defined as

si(t + 1) =
{

1 if Smin 6
∑

N sj (t) 6 Smax

0 otherwise
(1)

whereN is the von Neumann neighbourhood (all the nearest neighbours plus the central
site itself) on a cubic lattice andSmin andSmax specify the rule completely. For clarity, we
use the notation introduced in [7] to identify a given ruleR,

Rd
Smin−Smax

(2)

whered is the dimensionality of the lattice. All sites are updated in parallel. Att = 0, a
(randomly chosen) fractionm0 of the sites are set to 1, while the remaining sites are set
to 0. Chat́e and Manneville found that starting from such a disordered configuration it was
possible to obtain complex cyclical behaviour with periodic and quasi-periodic oscillations
of the magnetization,m(t) = 1/N

∑
i si(t), whereN is the number of sites on hypercubic

lattices of dimension higher than three. The termmagnetizationis used by analogy with
Ising spin models although here it is restricted to the interval [0, 1]. Models on hypercubic
lattices of up to eight dimensions have been studied. Other totalistic rules leading to similar
quasi-periodic behaviour in three dimensions have also been found [9]. Using an analogy
between temporally periodic phases and the growth of smooth interfaces, Grinsteinet al
[10] have argued that quasi-periodic cycles should not exist in two or less dimensions, while
periodicCA could exist only for specific rules where fluctuations are rendered unstable.

For more details about the behaviour of one-rule systems, we refer the reader to the
excellent review by Chaté and Manneville [7]. Here we will just mention the most important
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properties of these systems. (i) TheseCA can display non-trivial temporal behaviour when
started from a random initial configuration. For a total magnetization between about a
quarter and three quarters, the system will generally evolve into the same macroscopic
state. (ii) In this macroscopic state, the total magnetization will either converge to a fixed
point or to a limit cycle, periodic or quasi-periodic. (iii) The convergence is extremely
quick: systems typically reach their limit cycle in only a few time steps, 10 or less. (iv)
Microscopically, the lattice remains disordered and this disorder is reflected in the presence
of some noise in the macroscopic parameter for finiteN . This noise scales asN1/2 [12] and
therefore should vanish in the thermodynamical limit. (v) This specific type of rule leads
to interesting behaviour only for high-dimensional lattices (four dimensions and higher).

One can write down a mean-field solution for the temporal evolution of the global
magnetization [7],

m(t + 1) =
Smax∑

r=Smin

N !

r!(N − r)!
m(t)r [1 − m(t)]N−r (3)

which is simply an enumeration of the possible states of nearest neighbours for a random
distribution of zeros and ones. This solution, plotted in figure 1, has only fixed points
or chaotic solutions and does not reproduce the temporal behaviour of the realCA. As
discussed in section 5, this equation describes theCA properly only at high external noise,
when correlations vanish. We are still lacking a satisfying analytical solution for the
time behaviour of theseCA. Even allowing for multipoint correlation functions in their
approximate theory, Chaté et al [11] find, for the Hemmingsson rule, a smooth, almost
spherical, orbit instead of the characteristic triangular orbit obtained from the simulation,
with a phase velocity differing from the exact simulation results.

In sections 3–5 of this paper we concentrate on a mixture of two specific rules:R5
5−8

andR5
1−9. R5

5−8 produces a quasi-periodic cycle in the magnetization with a period close to
three and will be referred to as ruleQP3 (figure 2(a)). R5

1−9 gives a period-two cycle which
will be calledP2 (figure 2(b)). As these two rules lead to incompatible time periodicity, we

Figure 1. Magnetization map for the mean-field solution discussed in the text.
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Figure 2. Magnetization map for a 205 site lattice at a concentration of ruleP2: (a) p = 0.00,
(b) 1.00, (c) 0.10, (d) 0.50 and (e) 0.90.

can introduce frustration in theCA by quenching them randomly on the lattice. Previous
work has been done by Hemmingsson and Peng on a four-dimensionalCA in which they
mixed P3 andQP3 rules [13]. They found a second-order phase transition. In this work, the
first comparable study of incompatible cycles, i.e. where one cannot go continuously from
one cycle to the other, is presented. Other rules that have been surveyed will be discussed
in the last section of this paper.

3. Effects of frustration at zero temperature

Here, we report the effect of mixing microscopic rules on the macroscopic order parameter
m(t). Before the start of the simulations, local rules are attributed to each site of the
lattice: theP2 rule with probabilityp(P2) and theQP3 rule with probability 1− p(P2). Once
assigned, the rules are quenched for the length of the simulation. A (randomly chosen)
fraction m(0) = 0.50 of sites is then set to 1 for the initial configuration. The system is
next evolved microscopically using parallel updating. The value of the initial magnetization
is irrelevant as long asm(0) is taken to be somewhere between about 0.25 and 0.75, with
the precise bounds depending of the particular values ofSmin andSmax. Inside these bounds,
the models always converge to the same attractor. The absorbing state,m(t) = 0, reached
for an m(0) which is either too low or too high, is unstable under the introduction of
a large enough external noise. In the zero external noise limit, the dynamics is purely
deterministic and randomness only enters in the distribution of the rules and in the choice
of the initial value assigned to each site. As is the case for a one-rule (or pure)CA, the
transient period of the frustratedCA is very short and the system rapidly evolves onto a
stable orbit or a fixed point. The simulations were generally performed on lattices varying
between 155 = 759 375 and 205 = 3 200 000 sites, with a few simulations with 445 = 164
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Figure 3. Variance of the magnetization as a function of the concentration of ruleP2.

million sites for the autocorrelation functions. To be certain that the system was not in the
transient phase, the first 500 time steps were discarded. This equilibration time is more than
an order of magnitude larger than the usual transient time. As results are inherently noisy,
it is simpler to discard more time steps than to identify accurately the moment when the
magnetization falls onto the stable orbit. A highly efficient implementation was obtained
by employing multispin coding. Writing the algorithm in bit operations that act on 32 sites
in parallel, we reached a speed of about three iterations per second for a 205 site lattice on
a Dec Alpha workstation.

As we vary the concentration of ruleP2 (p(P2)), from pureQP3to pureP2, in the absence
of external noise, we find three different phases. At lowp(P2), the quasi-periodic phase
QP3 remains stable, with no sign of a period-two behaviour. As the concentration of rule
P2 increases to the point where the two rules are distributed with roughly equal probability,
the magnetization cycle collapses to a single dot. At highp(P2), a two-cycle appears,
dominating the temporal behaviour.

We can follow the transition between these phases by looking at the size of the orbit
in the magnetization map. For an infinitely largeCA, for both periodic and quasi-periodic
phases, this quantity should remain finite while it should be zero in a static phase. More
precisely, the size of the orbit can be described by the fluctuations in the total magnetization

1m = 〈m(t)2〉t − 〈m(t)〉2
t . (4)

Figure 3 shows the variations in this quantity as a function ofp(P2).
Figure 2 displays the magnetization maps for five values ofp(P2): 0, 0.10, 0.50, 0.90

and 1 belonging to the three phases described here. As is also found in the one-ruleCA, an
increase in size of the simulation cell leads to a decrease in the amplitude of the noise [12].
It is therefore expected that in the thermodynamic limit the dot in figure 2(d) will go to a
point with no spatial extension. For the two other phases, the structure in the magnetization
map should remain in the thermodynamical limit, but the width of the lines should go to
zero.

Figure 4 displays the Fourier transform of the magnetization obtained in a sequence of
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Figure 4. Frequency spectrum taken over 8192 time steps on a 205 site lattice forp(P2): (a)
0.10, (b) 0.50 and (c) 0.90. Note the different scales.

Figure 5. Blow up of the noisy tail of the frequency spectrum for (a) p(P2) = 1.00 and (b)
p(P2) = 0.90. The scale has been shifted for more clarity.

8192 time steps forp(P2) = 0.10, 0.50 and 0.90,

F =
∑

cos(kt)(m(t) − 〈m〉t ) (5)

with the total amplitude normalized to 1. There is no trace ofP2 at low concentration of
this rule, nor is there any trace ofQP3 for high p(P2). In the middle section, the frequency
spectrum is wide and the amplitude of the frequencies associated with the pure rules is
comparable to the background, although there is a bias towards frequencies close to those
found in the other two phases.

The effect of a small amount of impurities on the frequency spectrum is to decrease the
amplitude of the noisy background against the dominant frequencies. For a purep(P2) = 1
CA, the amplitude of the peak at frequency1

2 is 0.837 while it is 0.863 when 10% of rule
QP3 is introduced. As shown in figure 5, the weight in the dominant peak is gained at the
expense of the internal noise which decreases noticeably when impurities are introduced.
Similar results are found in theQP3 CAif small amounts of ruleP2 are introduced. Therefore,
impurities play a stabilizing role on the cycle, damping the macroscopic noise. Hakim and
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Figure 6. Variance of the magnetization as a function of the concentration of ruleP2 around
the QP3 to fixed-point transition for three system sizes:L6 (full cicles), L12 (open circles),L16
(open squares) andL24 (open triangles). The full curve is a fit to the scaling function with
pc = 0.3595 andγ = 0.78.

Rappel noticed recently [14] that the introduction of stochastic noise into globally coupled
complex Ginzburg–Landau equations can induce periodic behaviour. For the presentCA,
the stabilizing factor comes from spatially quenched disorder rather than from external
stochastic noise. This effect of impurities can also be found in the time domain; figure 3
shows that the insertion of sites following rulesP2 on a predominantlyQP3 lattice has the
effect of increasing the size of the cycle by a factor of almost four.

We consider first the transition fromQP3 to the fixed point phase. Figure 6 shows the
variation of the order parameter for five lattices of different size. In each simulation, the
run lasted 2500 time steps with the first 500 time steps rejected. ForL = 6 and 12, results
were averaged over 100 samples. Four samples were used forL = 16, 20 and 24. Lattices
of L = 16 and larger display a very sharp transition point that is almost discontinuous.
For smaller lattices, the macroscopic order parameter is dominated by noise. Making the
scaling assumption forp < pQP3

c ,

1m ∼ (pQP3
c − p)γ (6)

we find that to our degree of precision,pc does not vary withL betweenL = 16 and
L = 24. Its numerical value ispQP3

c = 0.3595± 0.001, withγ = 0.78± 0.05 (table 1).
The second transition from the stable magnetization to the period-two cycle is first-order

and consequently displays hysteresis (figure 7). To obtain this curve, we started with an
L = 16 lattice atp(P2) = 0.86. After rejecting the first 250 time steps, we calculated
the averages over the next 2000 time steps. Keeping the final configuration, we changed
the rules of a small number of sites, to bringp(P2) down by 0.0025. We then continued
the simulation, rejecting the first 250 time steps and averaging over the next 2000. This
process was repeated down top(P2) = 0.60 and back again to the initial concentration.
Starting the run withp(P2) = 0.60 and going up and down again also produced hysteresis.
Physically, thisfirst-order transition happens because one cannot go continuously from an
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Table 1. Scaling results for theQP3 to fixed-point transition. The fits were made for 0.0005
incrementedp’s.

L pc γ

12 0.3600 0.75
16 0.3600 0.79
18 0.3590 0.75
20 0.3595 0.78
22 0.3600 0.80
24 0.3590 0.75

Figure 7. Hysteresis of the variance of the magnetization as a function of the concentration of
rule P2 around theP2 to fixed-point transition. The starting point was atp(P2) = 0.85.

integer period to a fixed point. For this second transition, the critical probability is found
to be atpP2

c = 0.70± 0.03. No hysteresis was found for theQP3 to fixed-point transition.
To study microscopic aspects of theseCA, we follow the partial site–site autocorrelation

functions:

Cp(t, t0) = 1

N

∑
i∈p

σi(t + t0)σi(t0) (7)

wherep identifies the rule followed by the sites on which the average is taken andσ = 2s−1,
rescaling the value of the spins to±1. Figure 8 shows that the qualitative behaviour of
sites subjected to either rule is the same at a given concentration of ruleP2. The only
signature for the presence of different rules is found in the relative amplitude of the partial
autocorrelations. In figures 8(b) and (c), the two branches correspond to even and odd
times of the same correlation function. Similarly, in figure 8(a), we can observe the
quasi-periodic oscillations in the autocorrelations as three intertwined series of symbols
corresponding to times(t − t0) = 0, 3, 6, . . ., 1, 4, 7 . . . and 2, 5, 8, . . . . As is found for the
total magnetization, autocorrelations in the cyclic phases do not display the presence of the
minority rules; the only temporal oscillations are those related to the majority rule.



Phase diagram of frustrated (quasi-)periodic cellular automata 3029

Figure 8. Time autocorrelation function (equation (9)) for sites following ruleQP3(full symbols)
and sites following ruleP2 (open symbols) at (a) p(P2) = 0.10 and (b) p(P2) = 0.90.

In a recent paper, Chaté et al [11] (CGT) used analogies with interface growth governed
by the Kardar–Parisi–Zhang equation to study correlations inCA with the Hemmingsson
rule. They made the prediction that the temporal decay of local fluctuations around the
time-dependent global magnetization for quasi-periodicCA,

C ′
p(t, t0) = 1

N

∑
i∈p

σi(t + t0)σi(t0) − mσ
p(t + t0)m

σ
p(t0) (8)

with mσ
p(t) = 1/Np

∑
i∈p σi(t), would follow

C ′
p(t, t0) ∼ B(t, t0)|t − t ′|−(d−2)/2 (9)

whereB(t, t0) is an oscillating amplitude.
Since theCA studied here are in five dimensions, the envelope of decay should go

like −(d − 2)/2 = − 3
2. One must note that this prediction applies only to quasi-periodic

oscillations. Figure 9 shows that the relaxation in theQP3 region isconsistentwith CGT
predictions in spite of a considerable amount ofP2 rules. The relatively high level of
background noise to which the autocorrelation converges rapidly, even with 164 million
sites, makes it impossible to be more assertive. A similar situation is found in the decay of
the autocorrelation for aCA with high concentration of ruleP2 (p(P2) = 0.90 in the results
of figure 10). However, one can say with some confidence that the envelope of the decay
is better approximated by an exponential than a power law. In agreement with CGT, the
decay of the autocorrelations for the periodic phase do not follow (9).

For a pure-ruleCA, it is not clear whether the autocorrelations defined by (8) go strictly
to zero in the thermodynamical limit. Simulation with up to 500 million sites still shows
a long-time limit converging to a very small but non-zero value (typically, around 10−3–
10−4). One can be certain, however, that they converge to a non-zero value when impurities
are introduced. Already atp(P2) = 0.90, the higher and lower branches of the correlation
decay to 0.073 and 0.003 for sites following ruleP2 and 0.054 and 0.000 for those following
rule QP3. Correlations also converge to a non-zero value in theQP3region. We shall discuss
this phenomenon in more detail in the next section.
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Figure 9. Log–log plot of the time autocorrelations (equation (10)) atp(P2) = 0.10. The long-
time value has been subtracted independently for sites following ruleQP3 (full curve) andP2

(broken curve), respectively. The full line indicates the slope proposed by Chaté et al. t0 = 1000
andL = 44 (164 million sites).

Figure 10. Log-normal plot of the time autocorrelations (equation (10)) atp(P2) = 0.90. The
long-time value has been subtracted independently for sites following ruleQP3 (full curve) and
P2 (broken curve), respectively.t0 = 1000 andL = 44 (164 million sites).

4. The glassy phase

We now examine in detail the central region of the phase diagram. Apart from some noise,
the magnetization is constant in this region; cycles have disappeared at the macroscopic
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Figure 11. Time autocorrelation function (equation (10)) for rule (a) QP3 (b) P2 at p(P2) = 0.50.
Superimposed are the correlations witht0 = 100 andt0 = 21 000.

level. In the Fourier spectrum of the magnetization atp(P2) = 0.50, no single frequency
dominates (figure 4). We find instead a large band of more or less constant amplitude.

Although in this region, theCA are macroscopically constant, they remain dynamically
active at the microscopic level. The autocorrelation functions display bothQP3 and P2

periodicity contrary to the global synchronization found in the two other phases.
For a 205 site lattice, partial autocorrelations (given by (8)), display in this region a

very slow decay over more than a thousand time steps, in both periodic two and quasi-
periodic three cycles. But the long-time value to which they decay is not zero and is
rule-dependent (figure 11). As mentioned in the previous section, this non-vanishing long-
time limit appears as soon as a second rule is introduced in theCA. This suggests that
domains are introduced in which the temporal behaviour is strongly dominated by the local
rules, increasing correlation between sites in these regions. On a five-dimensional lattice, it
is difficult to imagine compact domains but one can think of strings or planes connected to
each other. In the pure-ruleCA, all sites are identical so that there is no defect preventing
diffusion of information. As other rules are introduced, frustration appears which prevents
full relaxation and can isolate regions. This can affect a relatively large proportion of sites,
contributing up to about 10% of the amplitude of the time autocorrelation function. These
values are much larger than what could be expected from the noise fluctuations. We can
see these domains forming by looking at the distribution of the time-average autocorrelation
function,

〈Ci(t, t0)〉t = 1

t

t+t0∑
t ′=t0

Si(t + t0)Si(t0) . (10)

For a pure-ruleCA, this distribution is very peaked and, as expected, displays a Gaussian
shape (figure 12(a)). As a second rule is introduced, the shape of this distribution
becomes more complex with many Gaussian peaks appearing, mirroring the multiple local
configurations available. In the glassy region, the distribution reaches the full width of the
available values with an even smaller number of sites remaining frozen over more than
3000 time steps (figure 12(b)). This shape remains unchanged for different lattice sizes and
initial configurations. It is therefore a signature of the glass phase.

The decay in the intermediate phase takes place on a much larger time-scale than in the
periodic or quasi-periodic regions of the phase diagram. From figure 13(a), it is clear that
the decay is much faster than a power law. In fact, the autocorrelations seem to follow a
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Figure 12. Distribution of the partial autocorrelation averaged over 3000 time steps. (a) Pure
QP3 and P2 CA on 155 site lattices; (b) p(P2) = 0.50 on a 205 site lattice. Full curve, sites
following rule QP3; broken curve, sites following ruleP2.

Figure 13. (a) Log–log plot and (b) log–double-log plot of the time autocorrelation with the
long-time value subtracted for sites following ruleQP3 (two higher curves) and (b) P2 (two lower
curves). The full curves are for the higher branches, the broken curves for the lower branches
as shown in the previous figure. The curves have been translated vertically for better display.
t0 = 1000 andL = 44.

stretched exponential:

Cp(t, t0) − Cp(t, ∞) ∼ exp(−tβ) (11)

with β < 1. This relaxation is reminiscent of what is found in glasses and spin glasses,
but happens here at zero external noise. Figure 13(b) shows the log–double-log plot for
the upper and lower branches of correlations atp(P2) = 0.50 for sites followingQP3 and
P2 rules, respectively. In both cases, the long-time values of these autocorrelations have
been subtracted. The exponentβ depends both on the rule followed and the concentration
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p(P2). β is therefore not a universal quantity. Moreover, the different branches of the
autocorrelation do not converge on the stretched exponential with the same time. The upper
ones fall almost immediately onto a straight line while the process can take up to almost
a hundred time steps, atp(P2) = 0.50, for the lower branches. In both cases this is very
much faster than what is typically found in normal glasses where the stretched exponential
relaxation (or theβ relaxation) sets in only in the long-time limit. Contrary to normal
glasses where we find two regimes of relaxation, we find only one here which is completely
described by the exponentβ.

As can be seen from figure 11, the relaxation is completely independent of the initial
time t0. There is no detectable difference between the relaxation witht0 = 1000 and 21 000
and therefore no ageing. This is not what is found in other frustrated systems like glasses
or spin glasses where ageing is important. It could be due to the fact that the system studied
is basically dynamical, i.e. that under the glass dynamics lies another one controlled by the
updating rules. While conventional glasses reach a stable state in the infinite time limit,
this may not be possible in ourCA since it lacks any cost function to minimize, ruling out
ageing.

The physical origin of the stretched exponential is not completely clear in this model.
The non-zero value to which the correlations decay signals the presence of quasi-frozen
domains. It is therefore not unreasonable to suppose that these domains possess different
relaxation times. Superposition of all these domains could then lead to a global stretched
exponential behaviour as has been proposed for conventional glasses. The presence of
a first-order transition between the central andP2 phases could explain the presence of
domains which, although not leading to a periodic macroscopic behaviour, could slow down
considerably the dynamical relaxation in trying to get the whole system fully synchronized.

Is this phase glassy? The stretched exponential would surely lead us to conclude that
this is the case. In systems with detailed balance, quenched disorder of competing rules can
lead to a glassy dynamics but we are dealing with a non-equilibrium system. Moreover,
not all signatures of a glass are present here. In particular, there is no ageing effect on the
autocorrelation functions. But theCA studied are fundamentally dynamical objects where
the glassy dynamics is superimposed onto an intrinsic periodic or quasi-periodic one. The
frustration is between two temporal behaviours, not two incompatible local stable states. It
is in this respect that this is a glassy phase, with sites unable to fall on the synchronized
period favoured by each rule.

5. Effects of external noise

In their review paper [8], Chaté and Manneville discussed the stability of the cycles under
the introduction of bounded noise that changes a site from one to zero with a certain
probability. This type of noise leads to an absorbing and irreversible state. In this work we
consider noise that pushes the system to a paramagnetic state where sites with value 0 and
1 can be found with equal probability, analogous to the effect of temperature in equilibrium
spin models. After each deterministic update, the value of a site is changed (from one to
zero or vice versa) with a probabilityη, leading to unbounded noise. Because there is no
cost function, a Boltzmann distribution is not applicable and the probability of changing a
site is independent of its local configuration.

At high noise levels, we expect that correlations between the sites will be completely lost
and therefore that the simple mean-field solution of Chaté and Manneville, supplemented by
a deterministic noise term, should describe the model. Since the process is done in parallel
on all the sites, we first calculate deterministically the magnetizationm∗ with (3) and then
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Figure 14. Magnetization as a function of external noiseη for (a) p(P2) = 0.00, (b) p(P2) = 0.50
and (c) p(P2) = 1.00. The full curve is from simulation and dots are from the mean-field solution.

Figure 15. 1m as a function of external noise for pure (a) QP3 and (b) P2 CA.

add the effect of the noise:

m(t + 1) = m∗(t + 1) − 2η(m∗(t + 1) − 0.50) . (12)

In the absence of noise, this equation leads to chaotic temporal behaviour for pureP2

andQP3 CA. With the introduction of noise, the mean-field solution goes through the usual
doubling route from chaos and reaches a single-valued fixed point for noise larger than
about 20%. It is interesting to note that the mean-field solution and the direct simulation
are almost equal when the former becomes single valued.

In figure 14, we follow the effects of noise on the magnetization for pureQP3

p(P2) = 0.50 and pureP2, respectively. The states reached by adding noise are fully
reversible so that it is possible to go back and forth from any phase to any other. This
reversibility indicates that the periodic and quasi-periodic cycles found at low external noise
correspond to a unique stable low-temperature limit. Figure 15 displays the variation of the
size of the cycle as a function of external noise for pureQP3 and P2 CA. For pureQP3, the
critical external noise, i.e. the point where1m goes almost to zero, is located atη ≈ 0.05.
For the pureP2 CA, we find a phase transition atη ≈ 0.15.

For the central glassy phase, the autocorrelation relaxation changes from a stretched
exponential to power-law decay atη ≈ 0.20 (see figure 16). The correlation time is very
short and tends to 1 atη ≈ 0.30. At high noise levels we recover the behaviour found in the
other phases, and therefore a transition exists from the glassy phase to the disorder phase.
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Figure 16. Log–log graph of the higher branch of the time autocorrelation function with the
long-time value subtracted for sites following ruleQP3 with t0 = 1000. Concentration of rule
p(P2) = 0.50, lattice size 205 sites. Full circle,η = 0.04; open squares,η = 0.16; full triangles,
η = 0.20; open circles,η = 0.24, full squares,η = 0.28 and open triangles,η = 0.32. Points
have been shifted for better display. The curves are a guide for the eyes.

6. Other rules

All the results presented in the previous sections were for a mixture of rulesR5
5−8 andR5

1−9.
We also examined other pairs of Chaté–Manneville-type rules:R5

1−2 or R5
1−7 (both period

two) combined withR5
4−7, R5

4−8, R5
4−9, R5

5−8, R5
5−9 or R5

5−10 (displayingQP3 behaviour).
At zero external noise, they presented a phase diagram similar to what is obtained in the
mixture R5

5−8 and R5
1−9: cycles are stable under finite amounts of impurity and fall onto

fixed points when the concentration of impurities becomes too large. In general,QP3 cycles
appear less stable under frustration than the periodic two-cycles.

None of these pairs of rules presents a richer phase diagram than what is discussed
above. This statement does not constitute a proof that frustration could not cause different
behaviour for carefully chosen pairs but it indicates that the phase diagram presented in the
previous section could be the norm in these dynamical frustrated models.

7. Conclusion

We have studied the phase diagram of Chaté–Manneville cellular automata in which
frustration is introduced by quenching two different dynamical rules on the lattice sites.
As the concentration of one rule varies, theCA go through two phase transitions, one first
and the other second order. With low amounts of impurities, theCA become less chaotic and
intrinsic noise levels are decreased. The time behaviour of the minority rule is not detected
either macroscopically or microscopically if its concentration is low. In the region between
the two phase transitions, theCA is macroscopically constant while presenting a signature
of a glass phase in the autocorrelation functions. This is a special glass phase since its slow
dynamics is superimposed on the much faster dynamics of the rules. No signs of ageing
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have been detected.
TheseCA remain stable with either internal frustration or external stochastic noise. As

the external noise level increases, the macroscopic order parameter reaches a fixed value
which can be described by a mean-field equation. This process is perfectly reversible
indicating that the periodic or quasi-periodic cycles are the thermodynamical states of these
rules in the low-noise phase.

Most interesting, perhaps, is the fact that these results are not particular to a single
pair of rules but appear generally in theseCA. It should therefore be possible to extend the
application of these results to other more realistic systems.
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